
Committing to Obsolescence

trystimuli

tryst@imu.li https://try.st.imu.li

Abstract. Many protocols would benefit from public key rotation, yet
find the complications of a public key infrastructure too onerous. If the
secret-public key pair can be used for signing, it might be used to sign
a rotation certificate designating a replacement key, but then so can any
attacker who obtains the secret key.
This paper presents a broadly applicable two-party procedure for gen-
erating an arbitrary secret-public key-pair that is committed to a given
signing key-pair. The signing key may then sign a self-evident rotation
certificate, increasing resilience against compromise of the active secret
key, without the complications and expanded threat model of a public
key infrastructure.

Keywords: Public Key Cryptography · Key Rotation · Commitments

This work is released under the CC-0 public domain dedication.

1 Introduction

While it is established good practice to periodically rotate cryptographic keys,
many systems rely on actively used long-term public keys, without providing for
the authenticated replacement of those keys. Current key rotation mechanisms
have significant drawbacks, which may explain part of this problem.

The simplest method to authenticate a new active public key is to use the
current one. The current key-pair can either sign a certificate endorsing the new
public key or authenticate a channel that the new public key is transmitted over.
For example, OpenSSH host key notification[4] uses that second method. The
primary drawback with all of these methods is that anyone who compromises
the current secret key can do everything the legitimate holder of that key can
do, including authenticating a new key of their choice.

The predominate scheme is more complicated. Public key infrastructures and
web of trust systems use a language to describe purposes, and then mark some
keys as trusted to validate purposes, including the purpose of trusting other
keys to validate purposes. In the Web PKI this has resulted in a large set of
essentially globally trusted actors, for whom establishing accountability is both
a huge project[6] and fails to prevent incorrect certification.

Narrowing that down to its essential features for key rotation, one can imag-
ine a long term signing key used only for designating an active public key and
its own successor. This eliminates the open-ended trust question of PKI, and

2 trystimuli

reduces the risk of the signing key leaking, but the indirection still requires uses
of the active key-pair to come with the certificates establishing its validity.

2 Committed Keys

Committed keys enable combining the features of authenticating rotation with
the current key and authenticating rotation with a pre-shared signing key. Key
generation is augmented by deriving a subkey based on the originally generated
key and a signing key, which can then later be revealed and used to certify the
replacement key.

2.1 Definitions

The target cryptosystem has a set of secret keys, S, a set of public keys, P , and a
projection from secret keys to public keys Pub : S → P . Pub must be infeasible
to reverse.

There must be another pair of functions, adding in the set Q, ∗ : P → Q→ P
and · : S → Q→ S, with the property that for all x ∈ S and y ∈ Q, Pub(x ·y) =
Pub(x)∗y. That is to say, values in Q must be able to be used to derive subkeys
in S and P . These operations must take a uniform distribution on Q and an
arbitrary distribution on S and P to a uniform distribution on S and P . In
typical case S and · are the set and operation of a group, and ∗ is a group action
on P that uses S, but such structure is not required.

The signing cryptosystem has sets Ss as secret keys and Ps as public keys, and
producing signatures in some set Σ, from messages in {0, 1}∗. Pubs : Ss → Ps,
Sign : Ss → {0, 1}∗ → Σ, and Verify : Ps → {0, 1}∗ → Σ → {true, false}. Any
signature scheme will do.

Finally, this scheme requires a random oracle, typically approximated by a
cryptographic hash function, from a tuple of the signing and target public keys
to Q, H : Ps → P → Q.

There are two roles in this system, the user and certification agents. In prac-
tice both are likely to be under the control of the same user, but the certification
agent might be embedded in a hardware security module, or simply a different
software module with distinct access control.

2.2 Setup

The certification agent generates a signing key, ss, and deriving the correspond-
ing verifying key ps. This signing-verifying key-pair may be reused for multiple
target public keys.

ss
R← Ss ps := Pubs(ss)

Committing to Obsolescence 3

2.3 Key Generation

The user agent generates a secret key, sc ∈ S, and derives its corresponding
public key, the committed value.

sc
R← S pc := Pub(sc)

Either the user agent sends pc to the certification agent or the certification
agent sends the verification key ps to the user agent. The recipient then calculates
the hash of the certificate verifying key and the committed value, and, if that’s
the certification agent, sends that hash to user agent.

h := H(ps, pc)

The user agent then derives the target secret and public keys using the related
functions on the generated secret and public keys:

s := sc · h
p := Pub(s) = Pub(sc · h) = Pub(sc) ∗ h = pc ∗ h

The user agent or certification agent stores the committed value pc, and the
user agent proceeds to use s and p.

2.4 Certificate Issuance

To issue a certificate concerning the target public key, the certification agent
requires the committed value, pc. Assuming it does not have it already, the user
agent sends pc to the certification agent who signs a certificate containing it and
any other claims about the public key p.

σ ← Sign(ss, pc||...)
The certificate (ps, σ, pc, ...) may then be distributed publicly.

2.5 Certificate Verification

Any recipient may then verify the signature on the certificate and that p =
pc ∗H(ps, pc).

Verify(ps, σ, pc||...) p
?
= pc ∗H(ps, pc)

If both checks pass, the certificate is valid.

3 Security Properties and Attacks

These certificates have essentially the same security goals as digital signatures,
in particular existential unforgability under various attack scenarios.

As a valid signature is required, any compromise that does not include the
signing key trivially reduces to preimage search on the hash function or an
existential unforgability under chosen message attack on the signature scheme.
However, there are two relevant attacks based on compromise of the signing key.

4 trystimuli

3.1 Secret Key Security with Knowledge of Signing Key and
Certificate

Suppose the attacker has all the keys except the target secret keys. For example,
the certificate agent during or after issue of the certificate.

Their goal is to recover the target secret key.

Assume that there exists some algorithm, A : P → Ss → S, that accepts a
public commitment key pc, a signing key ss, and returns the private key corre-
sponding to the public key pc ∗H(Pubs(ss), pc), namely sc ·H(Pubs(ss), pc).

Pick an arbitrary public key pr : P and signing key sz : Ss. Then apply the
algorithm A(pr, sz), resulting in sr ·H(Pubs(sz), pr). All that is left to recover
sr, and thus inverting Pub, is to invert ·. So long as inverting · is easy, A must
be nearly as infeasible as inverting Pub.

3.2 Existential Unforgeabality with Knowledge of Secret Key and
Signing Key

Assume that an attacker has the certificate signing key and the target secret key,
but not pc, the committed value, or h the hash of the committed value and the
verifying key. Additionally assume that they can easily invert Pub and Pubs,
say with a sufficiently capable quantum computer.

Their goal is to create any valid certificate.

A valid certificate requires a valid signature with a signing key and that the
committed value used in the certificate transformed by the hash of itself and the
key that signed the certificate equal the public key. The attacker has a signing
key that they know there is a valid commitment key to match, and can obviously
generate more signing keys if they want, so producing a signed certificate is no
problem. However, for whatever value of ps they use, they still must synthesize
pc such that p = pc ∗H(ps, pc).

Assuming H sufficiently approximates a random oracle, each potential com-
mitted value of pc produces an unrelated random value for H(ps, pc). To the
extent that the ∗ operation translates a uniform distribution on one of its inputs
to a uniform distribution on its output, the attacker is left to a brute force search
of P and Ps for a valid solution. Note that the brute force attack may target
many public keys at once.

4 Parameterizations for Target Sets and Cryptosystems

While the space of certification cryptosystems is open to all signature schemes,
the choice of target cryptosystems is limited to those that support the trans-
formation operations. Almost all public key cryptosystems are based on mathe-
matical structures that support these, but some may be formulated in ways that
make tracking the secret keys awkward.

Committing to Obsolescence 5

4.1 Prime Order Groups & Integers Modulo the Group Order

For cryptosystems that use elements of a prime order group for P (public keys),
and integers modulo that prime order for S (secret keys), Q may be S, · may be
defined multiplication in S, and ∗ may be scalar multiplication of group elements
(in additive notation).

In a prime order group, multiplying a member of that group by a scalar is
a one-to-one function, so iterating over the scalars will produce every member
of that group. Therefore, if the scalar is chosen from a uniform distribution, no
matter how the initial group member is chosen, the resultant group member will
be uniformly distributed across the group. Likewise, integers modulo a prime
form a finite field, so the revelation of h by the certificate does not provide any
information about s, as any scalar may have been multiplied by h to generate s.

This applies to many elliptic curve cryptosystems, as well as Ristretto255[7]
and other applications of Decaf[5] to Edwards, Twisted Edwards, and Mont-
gomery Curves. Many pairing based cryptosystems (like BLS signatures) likewise
use this same arrangement for secret and public keys.

4.2 Prime Order Subgroups & Integers Modulo the Subgroup
Order

Edwards, Twisted Edwards, and Montgomery Curves all have non-prime orders,
but are desirable to use for their constant time and fast implementations. While
using Decaf to construct a prime order group from the subgroup makes a more
generally robust system, this method does allow the subgroup to be used directly.

The user agent will generate pc as a point in one of the eight large prime
order subgroups, and multiply it by the random scalar, resulting in a p that is
also in that subgroup. For the attacker, using a point of low order for pc would
result in a p that is also low order, and adding a point of low order would only
make it less likely to reach the same subgroup as p.

Ed25519 Ed25519[2] is a popular signature scheme based on such an Edwards
Curve, however it defines its secret keys in {0, 1}256 which are then hashed to
produce an expanded secret, the secret scalar in integers modulo the subgroup
order and a MAC key in {0, 1}256. To target Ed25519, the secret key must be
kept in this expanded form, with the scalar and the MAC key already generated.
The key transformation acts only on the secret scalar and public key, while the
MAC key may be left untouched or have the secret scalar hashed into it.

4.3 Finite Field Exponentiation and Multiplication

For cryptosystems like Finite Field Diffie-Hellman[3], both S and P (and thus
Q), are integers modulo a public prime modulus q. · is multiplication in the
resulting finite field, while ∗ is exponentiation.

While multiplication in a finite field produces a uniform distribution if either
of its inputs in uniform, exponentiation does not. Exponentiation may produce

6 trystimuli

cycle lengths of any factor of q − 1. Implementations should ensure that q is of
the form q = 2q′+1, which restricts the cycle length to 1, 2, (q−1)/2, and q−1.
In that case, the only short cycle length bases are 1 and q − 1, which are both
unlikely to be generated and easy to test for.

4.4 CRYSTALS-Kyber

Kyber[1] uses vector of ring values as the secret key, and a matrix of ring values
multiplied by that vector plus another vector as the public key.

This naturally implies that our S, P and Q would all be a vector of ring
values, · would be vector addition, and ∗ would be defined as adding the matrix
multiplied by a vector to the public key.

Dilithium does essentially the same thing, but splits the public key into two
sections, which is not obviously compatible with applying the group action.

5 Conclusion

Cryptographically certified public key rotation is an important and often over-
looked component of any real-world secure system. Existing schemes are deficient
in important ways, either introducing additional complexity into the normal use
of the key, opening that process to additional attacks, or both. The committed
keys scheme leaves the normal use of the keys untouched and limits the oppor-
tunity for further attacks by committing the public key to a dedicated verifying
key. This scheme is broadly applicable to common public key cryptosystems, as
it requires very little underlying mathematic structure.

Further Work This paper only presents one possible formulation of committed
keys, and there may be others that are suited to other types of public key systems,
or provide other useful security properties.

While the signature scheme can easily be parameterized with threshold sig-
natures, this paper has not explored how to commit to a signature key during
setup of a threshold signature.

This also does not analyze the security of committed keys in a broader context
of interactions with the rest of a cryptosystem. For key rotation this is unlikely
to have much impact, the old keys are likely to be promptly discredited, but
there may be cryptosystem-specific considerations that should be examined.

References

1. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck, J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: Algo-
rithm Specifications And Supporting Documentation (Janurary 2021), https://pq-
crystals.org/kyber/data/kyber-specification-round3-20210131.pdf

Committing to Obsolescence 7

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed
high-security signatures. Journal of Cryptographic Engineering 2 (2012).
https://doi.org/10.1007/s13389-012-0027-1

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Transactions on Information Theory 22(6), 644–654 (1976).
https://doi.org/10.1109/TIT.1976.1055638

4. djm, dtucker, millert, markus: OpenSSH Protocol Extensions and Deviations,
https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL?annotate=HEAD

5. Hamburg, M.: Decaf: Eliminating cofactors through point compression. In: Gennaro,
R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. pp. 705–723.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

6. Stark, E., DeBlasio, J., O’Brien, D.: Certificate transparency in google chrome:
Past, present, and future. IEEE Security & Privacy 19(6), 112–118 (2021).
https://doi.org/10.1109/MSEC.2021.3103461

7. de Valence, H., Lovecruft, I., Arcieri, T.: The Ristretto Group (2023-09-24),
https://ristretto.group/

